Переключиться • 8 сентября 2024
Наука, способная предсказывать: как математика помогает бороться с глобальным потеплением
Наука, способная предсказывать: как математика помогает бороться с глобальным потеплением
Текст: Наташа Покровская
Фото: alpinabook.ru
Технологии с каждым днем все больше упрощают нашу жизнь — многие задачи компьютеры выполняют гораздо лучше и быстрее людей. Это касается, например, монотонной вычислительной работы: в современной реальности сложно встретить человека, который при необходимости что-то посчитать достанет блокнот и ручку. Кажется, что необходимость знать математику сегодня и вовсе отпала: зачем тратить время на обучение, если за нас все уже давно делают машины. Однако мало кто задумывается, что все технологии, которые стали неотъемлемой частью нашей повседневности, без этой научной дисциплины просто не могли бы существовать. О том, какую фундаментальную роль она играет для глобального технологического прогресса, рассказывает британский математик и популяризатор науки Иэн Стюарт в своей книге «Это база: Зачем нужна математика в повседневной жизни». Книга вышла в издании «Альпина нон-фикшн». Inc. публикует ее отрывок.
«Ледяной щит Гренландии тает намного быстрее, чем считалось ранее, угрожая сотням миллионов людей потопом и сильно приближая необратимые последствия изменения климата. Гренландия теряет ледяной покров в семь раз быстрее, чем в 1990-е годы, а масштабы и скорость таяния льда намного выше предсказанных», — The Guardian, декабрь 2019 года.
Наша планета разогревается, это опасно, и в этом наша вина. Мы знаем об этом, потому что тысячи экспертов-климатологов, работающих с сотнями математических моделей, предсказывали такое развитие событий не один десяток лет, и наблюдения не менее компетентных метеорологов подтверждают большую часть их выводов. Я мог бы посвятить оставшуюся часть книги разглагольствованиям о распространителях фейковых новостей и приводить в противовес изрекаемым ими нелепостям все более многочисленные свидетельства реальности антропогенных климатических изменений, но, как говорит Арло Гатри в середине фильма «Ресторан Элис», я пришел рассказать вам не об этом.
Изменения климата носят статистический характер, так что любое конкретное событие можно представить как одно из отклонений, которые просто происходят время от времени. Если монета подделана так, что три раза из четырех она выпадает орлом, то отдельный бросок все равно дает нам либо орла, либо решку — в точности так же, как и бросок нормальной монеты. Поэтому отдельный бросок не позволяет заметить разницу. Даже серию из трех или четырех орлов можно иногда получить с нормальной монетой. Однако, если бросков дадут орлов и решек, станет ясно, что монета неправильная.
Так и с климатом. Климат — не то же самое, что погода, которая меняется час от часа и день ото дня. Климат — это 30-летнее скользящее среднее. А также глобальные климатические средние для целой планеты. Изменение климата невозможно без серьезных долгосрочных изменений планетарного масштаба. У нас есть надежные записи температуры в мире примерно за 170 лет, и 17 из 18 самых теплых лет приходятся на период после 2000 года. Это уже не случайность.
Статистический характер климата позволяет отрицателям глобального потепления без труда мутить воду. Не имея возможности перемотать время и заглянуть в будущее планеты, климатологи вынуждены полагаться на математические модели. Им приходится оценивать скорость климатических изменений, разбираться, к каким результатам изменения могут привести, и выяснять, что может предпринять человечество, если договорится действовать сообща.
Первые модели были довольно рудиментарными, что открывало двери для возражений со стороны любого, кому не нравились предсказания, хотя теперь, задним числом, выясняется, что даже те модели давали довольно точный результат и по скорости повышения температуры, и по многим другим параметрам. С годами модели дорабатывались и улучшались, и предсказанные температуры достаточно хорошо совпадают с реальностью уже на протяжении полувека. Сколько льда растает вследствие этого — менее понятно, и, судя по всему, этот параметр был недооценен. Этот процесс изучен не слишком хорошо, а ученые слишком опасаются прослыть паникерами.
До сих пор я говорил в основном о том, как математика, действуя за сценой, влияет на нашу повседневную жизнь. Я намеренно опустил целую кучу важных областей применения математики в науке, в первую очередь в теоретической науке. Но климатические изменения уже видны — спросите об этом австралийцев, которым в начале 2020 года пришлось бороться с беспрецедентными природными пожарами. Взгляните на периоды рекордной жары по всему земному шару, сильнейшие за столетие наводнения, которые теперь случаются каждые 5-10 лет. Взгляните, как ни странно, на редкие всплески аномального холода.
Тот факт, что глобальное потепление может привести к значительному похолоданию в некоторых местах, противоречит интуитивным представлениям, но объяснить это несложно. Глобальное потепление — это повышение среднего количества тепла, поступающего в атмосферу, океаны и сушу. Никто не утверждает, что потепление будет идти везде одинаково.
По мере повышения полной тепловой энергии планеты отклонения от среднего — флуктуации — становятся больше и могут быть как холодными, так и теплыми. Смысл в том, что в целом тепло выигрывает. Внезапное похолодание в одном месте не говорит о том, что глобальное потепление — вымысел. Если в вашем городе на десять градусов холоднее обычного, но в одиннадцати городах где-то еще на один градус теплее, то средняя глобальная температура выросла при прочих равных условиях. Мало того, выросла и средняя температура в вашем городе. Проблема в том, что мы замечаем внезапный всплеск холода, но компенсационные эффекты могут оказаться слишком слабыми, чтобы они отложились у нас в голове, слишком распыленными или происходящими где-то еще.
Необычные всплески холода в Европе и Северной Америке в последние годы происходили потому, что воздушные потоки забросили холодный воздух из Арктики дальше на юг, чем обычно. Поэтому холодный воздух, который в нормальных условиях циркулировал бы около полярной ледяной шапки, оказался над океанами, над Гренландией, Северной Канадой и Россией. Почему этот холодный воздух пришел на юг? Потому что воздух в полярных областях был много теплее обычного и вытеснил холодный воздух. В целом весь регион стал теплее — в среднем. В моделировании климата достаточно математики на целую книгу, но я собираюсь говорить не об этом. Как Арло, я просто готовлю сцену для того, о чем я действительно хочу рассказать.
Лед по всему земному шару тает. В ряде необычных мест количество льда потихоньку увеличивается, но во всех остальных местах снижается, причем быстро. Ледники отступают, а ледяные шапки на обоих полюсах уменьшаются. Эти явления угрожают лишить питьевой воды пару миллиардов человек, а подъем уровня моря приведет к затоплению домов еще полумиллиарда, если мы не сумеем остановить эти процессы. В результате физика и математика таяния льда приобретают жизненно важное значение, причем буквально для каждого из нас.
Физики много чего знают о таянии льда. Наряду с кипением и парообразованием, это классический пример фазового перехода — изменения состояния вещества. Вода может существовать в разных состояниях. Она может быть твердой, жидкой или газообразной. То, в каком состоянии она находится, зависит в основном от температуры и давления. При атмосферном давлении достаточно холодная вода является твердым телом — льдом. При нагревании она проходит точку плавления и превращается в жидкость — собственно воду. Нагрейте ее еще, до точки кипения, и она превратится в газ — водяной пар. В настоящее время наука знает о существовании 18 фаз льда, последняя из которых, «квадратный лед», открыта в 2014 году. Три из фаз существуют при нормальных давлениях, остальные требуют куда более высоких его значений.
Большая часть того, что нам известно про лед, исходит из лабораторных экспериментов с относительно небольшими его количествами. Нам же в настоящее время настоятельно необходимо как можно больше знать о таянии чрезвычайно больших количеств льда в естественной среде. Существует два взаимосвязанных способа получения такой информации: наблюдение за происходящим и измерение параметров и построение теоретических моделей физических процессов. Ключ к реальному пониманию — соединение обоих методов.
Одним из признаков того, что полярные льды, особенно морские, тают, можно считать образование прудиков с талой водой. Поверхностный лед начинает таять, и небольшие темные лужи постепенно пятнают девственную белизну льда, хотя зачастую поверхность льда сейчас имеет не слишком девственный серый цвет от покрывающей его пыли.
Лужи заполнены водой, в отличие от льда, имеют темный цвет и поглощают солнечные лучи, вместо того чтобы отражать их. Инфракрасное излучение, в частности, прогревает лужи быстрее, чем лед, так что они постепенно растут. Они увеличиваются, со временем сливаются друг с другом и образуют талые пруды замысловатой формы — кляксы, соединенные тонкими каналами, которые ветвятся и тянутся во все стороны, как заросли каких-то странных грибов.
Физика роста талых прудов — одна из принципиально важных особенностей поведения морского льда при потеплении. А сейчас происходит именно это, особенно с арктическим морским льдом. Что случится с морским льдом, когда планета разогреется, — важная часть проблемы понимания последствий изменения климата. Поэтому математики, естественно, исследуют поведение математических моделей тающего льда, надеясь вытащить из них хотя бы некоторые его секреты. Иногда это удается, что, впрочем, неудивительно. Удивительно то, что одна из изучаемых в настоящее время моделей вообще не имеет отношения к таянию льда. Она связана с магнетизмом и датируется 1920 годом. Магнитные материалы тоже претерпевают своего рода фазовый переход — при слишком сильном нагреве они теряют изначально присущие им магнитные свойства.
Данная модель давно стала образцом для фазовых переходов. Придумал ее немецкий физик Вильгельм Ленц, но все называют ее моделью Изинга, поскольку математики и физики неизменно дают названия в честь того, кто в их сознании теснее всего ассоциируется с открытием. У Ленца был ученик Эрнст Изинг, которому он дал тему для докторской диссертации: рассмотреть эту модель и показать, что в ней есть магнитный фазовый переход. Изинг рассмотрел модель и показал, что такого перехода в ней нет. Тем не менее его исследование дало начало новой отрасли математической физики и сильно продвинуло вперед наши представления о магнитах.